精英家教网 > 高中数学 > 题目详情
圆心在x轴的正半轴上,半径为
3
且与直线3x+4y+4=0相切的圆的方程为
(x-
5
3
-4
3
)
2
 +y2=3
(x-
5
3
-4
3
)
2
 +y2=3
分析:由圆心在x轴上,设出圆心的坐标为(a,0),且a大于0,根据已知的半径,表示出圆的标准方程,由直线与圆相切,得到圆心到直线的距离d等于半径r,利用点到直线的距离公式列出关于a的方程,求出方程的解得到a的值,进而确定出圆的标准方程.
解答:解:根据题意设圆心坐标为(a,0)(a>0),半径r=
3

∴所求圆的方程为(x-a)2+y2=3,
又直线3x+4y+4=0与所求圆相切,
∴圆心到直线的距离d=
|3a+4|
5
=r=
3

整理得:3a+4=5
3
或3a+4=-5
3

解得:a=
5
3
-4
3
或a=
-5
3
-4
3
(舍去),
则所求圆的方程为(x-
5
3
-4
3
)
2
 +y2=3

故答案为:(x-
5
3
-4
3
)
2
 +y2=3
点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,以及点到直线的距离公式,当直线与圆相切时,圆心到直线的距离等于圆的半径,即d=r,熟练运用此性质是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆的半径为2,圆心在x轴的正半轴上,且圆与直线3x+4y+4=0相切,则圆的标准方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为(  )
A、x2+y2-2x-3=0B、x2+y2+4x=0C、x2+y2+2x-3=0D、x2+y2-4x=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为2
2
,则圆C的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为
π
3
的直线n,交l于点A,交⊙M于另一点B,且AO=OB=2.
(Ⅰ)求⊙M和抛物线C的方程;
(Ⅱ)若P为抛物线C上的动点,求
PM
PF
的最小值;
(Ⅲ)过l上的动点Q向⊙M作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为
π
3
的直线,交l于点A,交⊙M于另一点B,且AO=OB=2.
(Ⅰ)求⊙M和抛物线C的标准方程;
(Ⅱ)过圆心M的直线交抛物线C于P、Q两点,问
OP
OQ
是否为定值,若是定值,求出该定值.

查看答案和解析>>

同步练习册答案