精英家教网 > 高中数学 > 题目详情
设f(n)=(
1+i
1-i
n+(
1-i
1+i
n(n∈Z),则集合{f(n)}中元素的个数为(  )
A.1B.2C.3D.无数个
f(n)=(
1+i
1-i
n+(
1-i
1+i
n
=in+(-i)n
根据i的性质,对指数是0,1,2,3四个数字进行检验即可,
∵f(0)=2,f(1)=0,
f(2)=-2,f(3)=0.
∴集合中共有三个元素.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n),
(1)求数列{an}的通项公式;
(2)试构造一个数列{bn},(写出{bn}的一个通项公式)满足:对任意的正整数n都有bn<an,且
lim
n→∞
an
bn
=2,并说明理由;
(3)设各项均不为零的数列{cn}中,所有满足ci-ci+1<0的正整数i的个数称为这个数列{cn}的变号数.令cn=1-
a
an
(n为正整数),求数列{cn}的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(n)=(
1+i
1-i
n+(
1-i
1+i
n(n∈Z),则集合{f(n)}中元素的个数为(  )
A、1B、2C、3D、无数个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
设数列{an}的前n项和Sn=f(n).
(1)求数列{an}的通项公式;
(2)若bn=n-k(n∈N*,k∈R)满足:对任意的正整数n都有bn<an,求k的取值范围
(3)设各项均不为零的数列{cn}中,所有满足ci•ci+1<0的正整数i的个数称为这个数列{cn}的变号数.令cn=1-
aan
(n为正整数),求数列{cn}的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•昆明模拟)已知函数f(x)=x-
ln(1+x)
1+x
,x∈[0,+∞),数列{an}满足a1=1,an+1=f(an)(n=1,2,3…)
(I)设f′(x)=
g(x)
(1+x)2
,求g(x)在[0,+∞)上的最小值;
(II)证明:0<an+1<an≤1;
(III)记Tn=
an
1+a1
+
a1a2
(1+a1)(1+a2)
+…+
a1a2an
(1+a1)(1+a2)…(1+an)
,证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•资中县模拟)已知二次函数f(x)=x2-mx+m(x∈R)同时满足:(1)不等式f(x)≤0的解集有且只有一个元素;(2)在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n),bn=1-
8-man
,我们把所有满足bi•bi+1<0的正整数i的个数叫做数列{bn}的异号数.根据以上信息,给出下列五个命题:
①m=0;
②m=4;
③数列{an}的通项公式为an=2n-5;
④数列{bn}的异号数为2;
⑤数列{bn}的异号数为3.
其中正确命题的序号为
②⑤
②⑤
.(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案