精英家教网 > 高中数学 > 题目详情

函数是周期为的周期函数吗?为什么?判断函数是否为周期函数?

不是周期为的周期函数;是周期为的周期函数


解析:

不是周期函数,因为定义域中的时,不能成立.函数是周期为的周期函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函f(x)是定义在R上的周期为3的奇函数,f(1)<1,f(2)=
2a-1a+1
,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=[x]的函数值表示不超过x的最大整数,例如:[-3.5]=-4,[2.1]=2.对函数f(x)=[x]有以下的判断:
①若x∈[1,2],则f(x)的值域为{0,l,2};
②f(x+1)=f(x)+1;
③f(x1+x2)=f(x1)+f(x2);
④g(x)=x-f(x)是一个周期函数.
其中正确的判断有
②④
②④
(只填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①函数f(x)=
x-1
x+1
与g(x)=x的图象没有公共点;
②若定义在R上的函数f(x)满足f(x+3)=-f(x),则6为函数f(x)的周期;
③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

④定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函.
则其中正确的是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•宝山区二模)已知f(x)=
10x+a10x+1
是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省三明市尤溪一中高三(上)第一次月考数学试卷(文科)(解析版) 题型:填空题

下列说法中:
①函数与g(x)=x的图象没有公共点;
②若定义在R上的函数f(x)满足f(x+3)=-f(x),则6为函数f(x)的周期;
③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则
④定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函.
则其中正确的是   

查看答案和解析>>

同步练习册答案