精英家教网 > 高中数学 > 题目详情
(2011•临沂二模)已知f(x)=|x+1|+|x-3|,实数x1,x2满足x1≠x2,且f(x1)=f(x2)=2011,则x1+x2等于(  )
分析:使得函数值是2011,需要针对于函数中绝对值内的正负确定去掉绝对值以后的代数式,去掉绝对值以后,解出x的值,把两个自变量的值相加得到结果.
解答:解:∵f(x)=|x+1|+|x-3|,
x1,x2满足x1≠x2,且f(x1)=f(x2)=2011,
由绝对值的几何意义知x1,x2距离-1与3的距离之和是2011,
当x在-1的左边时,-x-1+3-x=2011,
∴x=-
2009
2

当x在3的右边时,x+1+x-3=2011,
∴x=
2013
2

则x1+x2=--
2009
2
+
2013
2
=2,
故选A
点评:本题考查含有绝对值的方程的解法,注意本题中要用到分类讨论思想,当绝对值内的代数式是一个正数时,直接去掉绝对值,当绝对值内是一个负数时,要变为相反数,运算过程若利用绝对值的几何意义会更直观.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•临沂二模)已知x>0,由不等式x+
1
x
≥2
x•
1
x
=2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3
3
x
2
x
2
4
x2
=3,…,可以推出结论:x+
a
xn
≥n+1(n∈N*),则a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)设x,y满足约束条件
4x-y≥0
x≤1
y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为8,则ab的最大值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)对于函数f(x)=
3
sinx+cosx,下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)如图,过圆x2+y2=4与x轴的两个交点A、B作圆的切线AC、BD,再过圆上任意一点H作圆的切线,交AC、BD与C、D两点,设AD、BC的交点为R.
(I)求动点R的轨迹E的方程;
(II)设E的上顶点为M,直线l交曲线E于P、Q两点,问:是否存在这样的直线l,使点G(1,0)恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)如图是某建筑物的三视图,现需将其外部用油漆刷一遍,若每平方米用漆0.1千克,则共需油漆大约为(  )(尺寸如图,单位:米,π取3)

查看答案和解析>>

同步练习册答案