精英家教网 > 高中数学 > 题目详情
设ai∈R+,i=1,2,…,n,且=1,求证:.

证明:由已知条件得

=n2.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.
(Ⅰ)设集合P=2,4,6,8,Q=2,4,8,16,分别求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求证:l(A)=
n(n-1)2

(Ⅲ)l(A)是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a1,a2,a3…an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤j≤n)中所有不同值的个数.设集合P={2,4,6,8},则l(p)=
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(提示:请从以下两个不等式选择其中一个证明即可,若两题都答以第一题为准)
(1)设ai∈R+,bi∈R+,i=1,2,…n,且a1+a2+…an=b1+b2+…bn=2,求证:
a
2
1
a1+b1
+
a
2
2
a2+b2
+…+
a
2
n
an+bn
≥1

(2)设ai∈R+(i=1,2,…n),求证:
(a1+a2+…an)2
2(
a
2
1
+
a
2
2
+…
a
2
n
)
a1
a2+a3
+
a2
a3+a4
+…+
an
a1+a2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的个数.
(1)设集合P={2,4,6,8},Q={2,4,8,16},分别求l(P)和l(Q)的值;
(2)若集合A={2,4,8,…,2n},求l(A)的值.

查看答案和解析>>

同步练习册答案