精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD, AD∥BC,∠ABC=,AB=PA=AD=a,cos∠ADC=
(1)求点D到平面PBC的距离;            
(2)求二面角C-PD-A的正切值。
解:(1 )如图,在四棱锥P-ABCD中,
∵BC∥AD,从而点D到平面PBC间的距离等于点A到平面PBC的距离,
∵∠ABC=
∴AB⊥BC,
又PA⊥底面ABCD,
∴PA⊥BC,
∴BC⊥平面PAB,
∴平面PAB⊥平面PBC,交线为PB,
过A作AE⊥PB,垂足为E,则AE⊥平面PBC,
∴AE的长等于点D到平面PBC的距离,而AB=PA=a,
∴AE=
即点D到平面PBC的距离为。  
(2)∵PA⊥底面ABCD,
∴平面PAD⊥底面ABCD,       
引CM⊥AD于M,MN⊥PD于N,则CM⊥平面PAD,
∴MN是CN在平面PAD上的射影,
由三垂线定理可知CN⊥PD,
∴∠CNM是二面角C-PD-A的平面角,
依题意

∴BC=a,       
可知

,       
∴二面角C-PD-A的正切值为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案