精英家教网 > 高中数学 > 题目详情

a0a10x1,求证:

答案:略
解析:

证法1(平方后作差)

a1时,

,即

0a1时,

,即

综上所述,被证不等式成立.

证法2∵0x1∴lg(1x)0lg(1x)0

所证不等式成立.


提示:

分析1:本题若证,只需证,这样绝对值符号脱掉了,证明便越过一个障碍.对上式作差,只需证,平方后给对数运算带来了可行性.

分析2:能否利用换底公式将以a为底的对数换成以10为底的常用对数,进而作差比较.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=ax(a>0且a≠1).
(1)求证:f(2x)=2f(x)g(x);
(2)设f(x)的反函数f-1(x),当a=
2
-1
时,比较f-1[g(x)]与-1的大小,证明你的结论;
(3)若a>1,n∈N*,且n≥2,比较f(n)与nf(1)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

a>0,a≠1,函数f(x)=ax2+x+1有最大值,则不等式loga(x2-x)>0的解集为
(
1-
5
2
,0)∪(1,
1+
5
2
)
(
1-
5
2
,0)∪(1,
1+
5
2
)

查看答案和解析>>

科目:高中数学 来源:江西省南昌二中2007届高三数学文科第二次考试卷 题型:044

a>0且a≠1,f(x)=loga(x),(x≥1).

(1)求f(x)的反函数f-1(x)和反函数的定义域;

(2)若,f-1(n)<,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=ax(a>0且a≠1).
(1)求证:f(2x)=2f(x)g(x);
(2)设f(x)的反函数f-1(x),当a=
2
-1
时,比较f-1[g(x)]与-1的大小,证明你的结论;
(3)若a>1,n∈N*,且n≥2,比较f(n)与nf(1)的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案