精英家教网 > 高中数学 > 题目详情
证明函数f(x)=lnx-x2+x只有一个零点.
证明:f(x)=lnx-x2+x,其定义域是(0,+∞),
f′(x)=
1
x
-2x+1=-
2x2-x-1
x

令f'(x)=0,即-
2x2-x-1
x
=0
,解得x=-
1
2
或x=1.
∵x>0,∴x=-
1
2
舍去.
当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.
∴函数f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减
∴当x=1时,函数f(x)取得最大值,其值为f(1)=ln1-12+1=0.
当x≠1时,f(x)<f(1),即f(x)<0.
∴函数f(x)只有一个零点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
(Ⅰ)已知函数f(x)=x-2sinx.求证:y=x+2为曲线f(x)的“上夹线”.
(Ⅱ)观察下图:
精英家教网
根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+8x+3(a<0),对于给定的负实数a,有一个最大正数l(a),使得
x∈[0,l(a)]时,不等式|f(x)|≤5都成立.
(1)当a=-2时,求l(a)的值;
(2)a为何值时,l(a)最大,并求出这个最大值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+2x+3(a∈R)
(1)若函数f(x)在x=2处取得极值,求实数a的值;
(Ⅱ)若a=1,设g(x)=f(x)+kx,且不等式g′(x)≥0在X∈(0,2)上恒成立,求实数k的取值范围;
(Ⅲ)在(I)的条件下,将函数f(x)的图象关于y轴对称得到函数φ(x)的图象,再将函数φ(x)的图象向右平移3个单位向下平移4个单位得到函数w(x)的图象,试确定函数w(x)的单调性并根据单调性证明ln[2.3.4…(n+1))]2≤n(n+1)(n∈N,n>l).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义y=log(1+x)F(x,y),x、y∈(0,+∞),
(Ⅰ)令函数f(x)=F(x,2)-3x,过坐标原点O作曲线C:y=f(x)的切线l,切点为P(n,t)(n>0),设曲线C与l及y轴围成图形的面积为S,求S的值.
(Ⅱ)令函数g(x)=F(x,2)+alnx,讨论函数g(x)是否有极值,如果有,说明是极大值还是极小值.
(Ⅲ)证明:当x,y∈N*且x<y时,F(x,y)>F(y,x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx(x>0).
(1)求过原点O且与函数f(x)=lnx图象相切的切线l方程,并证明函数f(x)=lnx图象不在直线l的上方;
(2)若在区间[1,2]内至少存在一个实数x,使得x4-ax3+10x<e(x3-ax2+10)lnx成立,求实数a的取值范围(e为自然对数的底)

查看答案和解析>>

同步练习册答案