精英家教网 > 高中数学 > 题目详情
已知tanα=2,tanβ=3,则tan(α-β)=
-
1
7
-
1
7
分析:利用两角差的正切tan(α-β)=
tanα-tanβ
1+tanαtanβ
即可求得答案.
解答:解:∵tanα=2,tanβ=3,
∴tan(α-β)=
tanα-tanβ
1+tanαtanβ
=
2-3
1+2×3
=-
1
7

故答案为:-
1
7
点评:本题考查两角差的正切,掌握公式是关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的焦点为F1(-t,0),F2(t,0),(t>0),P为椭圆上一点,且|F1F2|是|PF1|,|PF2|的等差中项.
(1)求椭圆方程;
(2)如果点P在第二象限且∠PF1F2=1200,求tan∠F1PF2的值;
(3)设A是椭圆的右顶点,在椭圆上是否存在点M(不同于点A),使∠F1MA=90°,若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知向量
a
=(2cosx,tan(x+α))
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
π
2
))
的终边上一点P(-t,-t)(t≠0),记f(x)=
a
b

(1)求函数f(x)的最大值,最小正周期;
(2)作出函数f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(cosα,sinα)
,设
m
=
a
+t
b
(t为实数).
(1)若
a
b
共线,求tanα的值;
(2)若α=
π
4
,求当|
m
|取最小值时实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-π<x<π,t=tan.

(1)试用t表示sinx、cosx;

(2)设x1、x2为适合方程6sinx+5cosx=7的两个不同的值.

求tan与tanx1·tanx2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-π<x<π,t=tan.

(1)试用t表示sinx、cosx;

(2)设x1、x2为适合方程6sinx+5cosx=7的两个不同的值.

求tan与tanx1·tanx2的值.

查看答案和解析>>

同步练习册答案