精英家教网 > 高中数学 > 题目详情

如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,是锐角,且平面ACEF⊥平面ABCD

(Ⅰ)求证:

(Ⅱ)若直线DE与平面ACEF所成的角的正切值是

试求的余弦值.

【答案解析】(Ⅰ)证明:在等腰梯形ABCD中,∵AD=DC=CB=AB,∴ADBC为腰,取AB得中点H,连CH,易知,四边形ADCH为菱形,则CH=AH=BH,故△ACB为直角三角形,,…3分

平面平面,且平面平面平面,而平面,故. ……6分

(Ⅱ)连结D,再连结EM、FM.易知四边形为菱形,∴DMAC,注意到平面平面,故DM⊥平面.于是,即为直线DE与平面ACEF所成的角.                                               

   ……9分

AD=DC=BC=,则MD=

依题意,     

中,

=AM四边形AMEF为平行四边形    

           ………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)求证:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求证:AB1∥平面 A1C1C;
(Ⅱ)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)若D是BC的中点,求证:B1D∥平面A1C1C;
(3)若BC=2,求几何体ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•郑州二模)如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求证:A1B1⊥平面AA1C; 
(II)求证:AB1∥平面 A1C1C;
(II)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

同步练习册答案