精英家教网 > 高中数学 > 题目详情
已知实数xy满足(x+1)2+(y-2)2=16,求3x+4y的最值.

解析:这样的题目可考虑数形结合,把满足的xy视为圆(x+1)2+(y-2)2=16上的动点,可考虑利用圆的参数方程来求解,也可引入向量来求解,这样也要求同学们对于所学知识能够使用.

解:由题意知,设代入3x+4y=3(-1+4cosθ)+4(2+4sinθ)=20cos(θ+α)+5,于是3x+4y的最大、最小值分别为25、-15.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y+2≥0
x+y≥0
x≤1
,则z=2x+y的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足
x≥1
y≥2
x+y≤4
,则u=
x+y
x
的取值范围是
[2,4]
[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x+y≤2
x-y≤2
0≤x≤1
,则z=2x-3y的最大值是
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y2-x≤0
x+y≤2
,则2x+y的最小值为
-
1
8
-
1
8
,最大值为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知实数x,y满足|2x+y+1|≤|x+2y+2|,且|y|≤1,则z=2x+y的最大值为(  )

查看答案和解析>>

同步练习册答案