精英家教网 > 高中数学 > 题目详情
等差数列{an}中,a3=3,a1+a7=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
1anan+1
,证明:数列{bn}的前n项和Sn<1.
分析:(I)设等差数列{an}的公差为d,由a3=3,a1+a7=8利用等差数列的通项公式可得
a1+2d=3
2a1+6d=8
,解得a1及d即可;
(II)利用(I)及bn=
1
anan+1
,裂项求和可得bn=
1
n
-
1
n+1
进而得到其前n项和Sn
解答:(I)解:设等差数列{an}的公差为d,由a3=3,a1+a7=8可得
a1+2d=3
2a1+6d=8
,解得
a1=1
d=1

∴an=a1+(n-1)d=1+(n-1)×1=n.
(II)证明:由(I)可知:an=n,
bn=
1
anan+1
=
1
n(n+1)
=
1
n
-
1
n+1

∴Sn=(1-
1
2
)+(
1
2
-
1
3
)+
…+(
1
n
-
1
n+1
)
=1-
1
n+1
<1
点评:熟练掌握等差数列的通项公式及其裂项求和是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案