科目:高中数学 来源: 题型:
已知数列
中,
,
,
.
(1)求证:
是等差数列;并求数列
的通项公式;
(2)假设对于任意的正整数
、
,都有
,则称该数列为“
域收敛数列”. 试判断: 数列
,
是否为一个“
域收敛数列”,请说明你的理由.
查看答案和解析>>
科目:高中数学 来源:2013届广东省高二下期中理科数学试卷(解析版) 题型:解答题
(本小题满分14分)
已知数列
中,
,
,
为该数列的前
项和,且
.
(1)求数列
的通项公式;
(2)若不等式
对一切正整数
都成立,求正整数
的最大值,并证明结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com