精英家教网 > 高中数学 > 题目详情

求数列sinα,sin(α+d),sin(α+2d),…,sin[α+(n-1)d],…的前n项的和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差为d的等差数列an,0<a1
π
2
,0<d<
π
2
,其前n项和为Sn,若sin(a1+a3)=sina2,cos(a3-a1)=cosa2
(1)求数列an的通项公式;
(2)设bn=
Sn
(n+1)•2n-1
,求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为锐角,且tanα=
2
-1
,函数f(x)=2xtan2α+sin(2α+
π
4
)
,数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面积
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)设函数T(x)=
2x,  0≤x<
1
2
2(1-x),  
1
2
≤x≤1

(1)求函数y=T(sin(
π
2
x))和y=sin(
π
2
T(x))的解析式;
(2)是否存在非负实数a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①当x∈[0,
1
2n
]时,求y=Tn(x)的解析式;
已知下面正确的命题:当x∈[
i-1
2n
i+1
2n
](i∈N*,1≤i≤2n-1)时,都有Tn(x)=Tn
i
2n-1
-x)恒成立.
②对于给定的正整数m,若方程Tm(x)=kx恰有2m个不同的实数根,确定k的取值范围;若将这些根从小到大排列组成数列{xn}(1≤n≤2m),求数列{xn}所有2m项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)已知向量
a
=(sin(
ω
2
x
),
1
2
),
b
=(cos(
ω
2
x
),
1
2
),(ω>0,x≥0),函数f(x)=
a
b
的第n(n∈N*)个零点记作xn(从左向右依次计数),则所有xn组成数列{xn}.
(1)若ω=
1
2
,求x2
(2)若函数f (x)的最小正周期为π,求数列{xn}的前100项和S100

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
4
x2+bx-
3
4
,已知不论α、β为何实数,恒有f(cosα)≤0,f(2-sinβ)≥0,对正数数列{an},其前n项和Sn=f(an)(n∈N+).
(1)求b的值;
(2)求数列{an}的通项公式;
(3)问是否存在等比数列{bn},使得a1b1+a2b2+…+anbn=2n+1(2n-1)+2对于一切正整数n都成立?并证明你的结论.
(4)若
cn
=
1
1+an
(n∈N+),且数列{cn}的前n项和为Tn,试比较Tn
1
6
的大小,并给予证明.

查看答案和解析>>

同步练习册答案