精英家教网 > 高中数学 > 题目详情
15.实数m分别取什么数值时,复数z=(m+2)+(3-2m)i
(1)与复数12+17i互为共轭;
(2)复数的模取得最小值,求出此时的最小值.

分析 (1)根据共轭复数的定义得到关于 m的方程组,解出即可;(2)根据二次函数的性质求出|z|的最小值即可.

解答 解:(1)根据共轭复数的定义得:
$\left\{\begin{array}{l}{m+2=12}\\{3-2m=-17}\end{array}\right.$,解得:m=10;
(2)|z|=$\sqrt{{(m+2)}^{2}{+(3-2m)}^{2}}$=$\sqrt{{5(m-\frac{4}{5})}^{2}+\frac{49}{5}}$,
当m=$\frac{4}{5}$时,复数的模取最小值$\frac{7\sqrt{5}}{5}$.

点评 本题考查了复数求模问题,考查共轭复数的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,直线l过点P(1,0),倾斜角为$\frac{3π}{4}$.以坐标原点为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=4cosθ;
(1)写出直线l的参数方程和曲线C的直角坐标方程;
(2)记直线l和曲线C的两个交点分别为A,B,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,$A{A_1}=\sqrt{2}$,∠A1AD=∠A1AB=120°,则对角线BD1的长度为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.偶函数f(x)在(0,+∞)上递增,a=f(log2$\frac{1}{3}$)b=f($\frac{3}{2}$)c=f(log32),则下列关系式中正确的是(  )
A.<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax+cosx在R上是单调函数,则实数a的取值范围是(  )
A.[1,+∞)B.(1,+∞)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,某组合体的三视图是由边长为2的正方形和直径为2的圆组成,则它的体积为(  )
A.4+4πB.8+4πC.$4+\frac{4}{3}π$D.$8+\frac{4}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在如图所示程序框图中,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出“恭喜中奖!”的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx-x,g(x)=$\frac{a}{2}$x2-ax(a∈R).
(Ⅰ)若f(x)和g(x)在(0,+∞)有相同的单调区间,求a的取值范围;
(Ⅱ)令h(x)=f(x)-g(x)-ax(a∈R),若h(x)在定义域内有两个不同的极值点.
(i)求a的取值范围;
(ii)设两个极值点分别为x1,x2,证明:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若sinα+cosα=tan390°,则sin2α等于(  )
A.-$\frac{2}{3}$B.-$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案