精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,a1=1且对于任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:bn=nan,Tn为数列{bn}的前n项和,求证:当n≥2时,Tn<4.
(本小题满分12分)
(1)点(an+1,Sn)在直线2x+y-2=0上
∴2an+1+Sn-2=0即∴Sn=2-2an+1    ①
当n≥2时,∴Sn-1=2-2an     ②…(3分)
由①-②可得:an=2an+1
an+1
an
=
1
2
(n≥2)又a1=1,a2=
1
2
符合上式
数列{an}是以1为首项,
1
2
为公比的等比数列
an=(
1
2
)
n-1
                  …(6分)
(2)由(1)知bn=nan=n(
1
2
)
n-1

∴Tn=1+2(
1
2
)
1
+3(
1
2
)
2
+4(
1
2
)
3
+…+n(
1
2
)
n-1
     …③
1
2
Tn=
1
2
+2(
1
2
)
2
+3(
1
2
)
3
+4(
1
2
)
4
+…+n(
1
2
)
n
    …④
由③-④得∴Tn=4-(
1
2
)n-2-n(
1
2
)n-1=4-
n+2
2n-1
<4
…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案