精英家教网 > 高中数学 > 题目详情
已知P1(x5)P2(2y)所在直线上取一点P(11),使||2||,求P1P2点的坐标。

 

答案:
解析:

∴ P1点的坐标(7,5),P2点的坐标(-2,-1).

∴ P1点的坐标(-5,5),P2点的坐标(-2,3).由于起点、终点、分点应相对理解,这个问题我们可从另一个角度去理解

如图,||=2||,则P2点为的中点,应用中点公式

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆Γ的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,A(0,b)、B(0,-b)和Q(a,0)为Γ的三个顶点.
(1)若点M满足
AM
=
1
2
(
AQ
+
AB
)
,求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆Γ于C、D两点,交直线l2:y=k2x于点E.若k1k2=-
b2
a2
,证明:E为CD的中点;
(3)设点P在椭圆Γ内且不在x轴上,如何构作过PQ中点F的直线l,使得l与椭圆Γ的两个交点P1、P2满足
PP1
+
PP2
=
PQ
PP1
+
PP2
=
PQ
?令a=10,b=5,点P的坐标是(-8,-1),若椭圆Γ上的点P1、P2满足
PP1
+
PP2
=
PQ
,求点P1、P2的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在x轴上的双曲线的离心率为
5

(1)求其渐近线方程;
(2)过双曲线上点P的直线分别交两条渐近线于P1、P2两点,且
P1P
=2
PP2
S△OP1P2=9,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P的轨迹方程为:
x2
4
-
y2
5
=1(x>2),O是坐标原点.
①若直线x-my-3=0截动点P的轨迹所得弦长为5,求实数m的值;
②设过P的轨迹上的点P的直线与该双曲线的两渐近线分别交于点P1、P2,且点P分有向线段
P1P2
所成的比为λ(λ>0),当λ∈[
3
4
3
2
]时,求|
OP1
|•|
OP2
|的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:044

已知P1(x5)P2(2y)所在直线上取一点P(11),使||2||,求P1P2点的坐标。

 

查看答案和解析>>

同步练习册答案