精英家教网 > 高中数学 > 题目详情
幂函数f(x)=xα过点(2,4),求出f(x)的解析式并用单调性定义证明f(x)在(0,+∞)上为增函数.
分析:欲求函数f(x)的解析式,由于已知两函数是幂函数,故可用待定系数法设出两函数的解析式,代入点的坐标求出函数的解析式.由定义进行证明即可,取0<x1<x2,我们构造出f(x2)-f(x1)的表达式,根据实数的性质,我们易出f(x2)-f(x1)的符号,进而根据函数单调性的定义,得到答案.
解答:解:由幂函数f(x)=xα过点(2,4),得
4=2α⇒α=2
f(x)=x2
f(x)在(0,+∞)上为增函数,证明如下:
设x1,x2∈(0,+∞),且x1<x2
则f(x1)-f(x2)=x12-x22=x12-x22
=(x1+x2)(x1-x2
∵x1,x2,∈(,+∞),且x1<x2
∴x1-x2<0,x1+x2>0
∴(x1-x2)(x1+x2)<0
即f(x1)-f(x2)>0,f(x1)>f(x2
∴函数f(x)在(,+∞)上为增函数.
点评:本题考查幂函数单调性、奇偶性及其应用,解题的关键是熟练掌握幂函数的性质,且能根据其性质进行运算,本题考查到了函数的单调性的证明方法定义法,其中作差法(定义法)证明函数的单调性是我们中学阶段证明函数单调性最重要的方法,一定要掌握其解的格式和步骤.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数f(x)=x(2-k)(1+k),k∈Z,且f(x)在(0,+∞)上单调递增.
(1)求实数k的值,并写出相应的函数f(x)的解析式;
(2)若F(x)=2f(x)-4x+3在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)试判断是否存在正数q,使函数g(x)=1-qf(x)+(2q-1)x在区间[-1,2]上的值域为[-4,
178
]
.若存在,求出q的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-2m2+m+3(m∈Z) 为偶函数,且在(0,+∞)上是增函数.
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1)在区间[2,3]上为增函数,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)幂函数f(x)=xα(α为常数)的图象经过(3,
3
),则f(x)的解析式是
f(x)=x
1
2
f(x)=x
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-
1
2
p2+p+
3
2
(p∈N)在(0,+∞)上是增函数,且在定义域上是偶函数.
(1)求p的值,并写出相应的f(x)的解析式;
(2)对于(1)中求得的函数f(x),设函数g(x)=-qf[f(x)]+(2q-1)f(x)+1,问:是否存在实数q(q<0),使得g(x)在区间(-∞,-4]上是减函数,且在区间(-4,0)(10)上是增函数?若存在,请求出来;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x(2k-1)(3-k)(k∈z)是偶函数且在(0,+∞)上为增函数.
(1)求f(x)的解析式.
(2)求x∈[-1,1]时,函数g(x)=f(x)-mx是单调函数,求m的取值范围.

查看答案和解析>>

同步练习册答案