精英家教网 > 高中数学 > 题目详情
已知数列{an}满足:a1=2t-3(t∈R且t≠±1),an+1=
(2tn+1-3)an+2(t-1)tn-1an+2tn-1
(n∈N*).
(1)求数列{an}的通项公式;
(2)若t>0,试比较an+1与an的大小.
分析:(1)由题意变形可得
an+1+1
tn+1-1
=
2(an+1)
an+2tn-1
=
2(an+1)
tn-1
an+1
tn-1
+2
an+1
tn-1
=bn
可得即数列{
1
bn
}为首项公差均为
1
2
的等差数列,通过求其通项进而求{an}的通项;
(2)由(1)的结论利用作差法可比较an+1与an的大小.
解答:解:(1)由原式变形得an+1=
2tn+1an-3an+2tn+1-2tn-1
an+2tn-1

=
2tn+1an+2tn+1-2an-2-an-2tn+1
an+2tn-1
=
2tn+1an+2tn+1-2an-2
an+2tn-1
-1

=
2tn+1(an+1)-2(an+1)
an+2tn-1
-1
=
2(tn+1-1)(an+1)
an+2tn-1
 -1

an+1=
2(tn+1-1)(an+1)
an+2tn-1
 -1
,可得an+1+1=
2(tn+1-1)(an+1)
an+2tn-1

所以
an+1+1
tn+1-1
=
2(an+1)
an+2tn-1
=
2(an+1)
an+1+2(tn-1)
=
2(an+1)
tn-1
an+1
tn-1
+2

an+1
tn-1
=bn
,则bn+1=
2bn
bn+2
①,当n=1时,b1=
a1+1
t-1
=
2t-2
t-1
=2

又由①取倒数得 
1
bn+1
=
1
bn
+
1
2
1
b1
=
1
2
,即数列{
1
bn
}为首项公差均为
1
2
的等差数列,
从而有
1
bn
=
1
b1
+(n-1)•
1
2
=
n
2
,即 
an+1
tn-1
=
2
n

所以数列{an}的通项公式为:an=
2(tn-1)
n
-1

(2)由(1)可知an+1-an=
2(tn+1-1)
n+1
-
2(tn-1)
n
=
2(t-1)
n(n+1)
[n(1+t+…+tn-1+tn)-(n+1)(1+t+…+tn-1)]
=
2(t-1)
n(n+1)
[ntn-(1+t+…+tn-1)]=
2(t-1)
n(n+1)
[(tn-1)+(tn-t)+…+(tn-tn-1)]
=
2(t-1)2
n(n+1)
[(tn-1+tn-2+…+1)+t(tn-2+tn-3+…+1)+…+tn-1]

显然在t>0(t≠1)时恒有an+1-an>0,
故an+1>an
点评:本题为由数列的递推公式求数列的通项公式,准确变形利用倒数法构造等差数列是解决问题的关键,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案