精英家教网 > 高中数学 > 题目详情
设P是椭圆=1在第一象限部分的弧AB上的一点,求使四边形OAPB的面积最大的点P的坐标.

思路分析:由于P是椭圆=1在第一象限部分的弧AB上的一动点,因此四边形OAPB的形状不定,则不能用特殊四边形的面积公式来求其最值,只能考虑把四边形分解为几个三角形,利用三角形的知识来求其面积的最大值.

解:∵点P是椭圆=1在第一象限部分的弧AB上的一点,

∴设P(6cosθ,2sinθ),θ∈(0,)(图略).

法一:直线AB方程为=1,即x+3y-6=0.欲使SOAPB最大,只需P到AB的距离最大.

∵dP-AB=θ∈(0,),

sin(θ+)>0.∴当θ=时,dmax=.

∴(S△APB)max==6(-1).

∴(SOAPB)max=·6·2+6(-1)=.

法二:SOAPB=S△POA+S△POB=·2·6cosθ+·6·2sinθ

=6(sinθ+cosθ)=sin(θ+),θ∈(0,),

∴当θ=时,(SOAPB)max=,此时点P的坐标为(,2).

    拓展延伸 分析本题所求的最值可以有几个转化方向,即转化为求S△POA+S△POB,SOAPB的最大值或者求点P到AB的最大距离,或者求SOAPB的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点、焦点在x轴上的椭圆的离心率是
3
2
,椭圆上任意一点到两个焦点距离之和为4.
(1)求椭圆标准方程;
(2)设椭圆长轴的左端点为A,P是椭圆上且位于第一象限的任意一点,AB∥OP,点B在椭圆上,R为直线AB与y轴的交点,证明:
AB
AR
=2
OP
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知点D(0,-2),过点D作抛线C1:x2=2py(p>0)的切线l,切点A在第一象限,如图.
(1)求切点A的纵坐标;
(2)若离心率为
3
2
的椭圆C:
y2
a 2
+
x2
b2
=1(a>b>0)恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k2,k3,若2k1+k2=3k,求抛物线C1和椭圆C2的方程.
(3)设P、Q分别是(2)中的椭圆C2的右顶点和上顶点,M是椭圆C2在第一象限的任意一点,求四边形OPMQ面积的最大值以及此时M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,抛物线C:y2=8x的焦点为F.椭圆Σ的中心在坐标原点,离心率e=
1
2
,并以F为一个焦点.
(1)求椭圆Σ的标准方程;
(2)设A1A2是椭圆Σ的长轴(A1在A2的左侧),P是抛物线C在第一象限的一点,过P作抛物线C的切线,若切线经过A1,求证:tan∠A1PA2=
2

查看答案和解析>>

科目:高中数学 来源:山东省实验中学2011届高三5月针对性练习数学理综试题 题型:044

已知点D(0,-2),过点D作抛线C1:x2=2py(p>0)的切线l,切点A在第一象限,如图.

(1)求切点A的纵坐标;

(2)若离心率为的椭圆恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k1,k2,若2k1+k2=3k,求抛物线C1和椭圆C2的方程.

(3)设P、Q分别是(2)中的椭圆C2的右顶点和上顶点,M是椭圆C2在第一象限的任意一点,求四边形OPMQ面积的最大值以及此时M点的坐标.

查看答案和解析>>

同步练习册答案