精英家教网 > 高中数学 > 题目详情
解关于x的不等式(ax-1)(x-2)>0,a∈R.
分析:分四种情况考虑:(a)当a=0时,将a=0代入原不等式求出解集即为原不等式的解集;(b)当a小于0时,在原不等式左右两边同时除以a,不等号方向改变,根据不等式取解集的方法表示出此时不等式的解集即可;(c)当a大于0小于等于
1
2
时,在不等式左右两边同时除以a,不等号方向不变,且得到
1
a
大于2,根据不等式取解集的方法得出原不等式的解集;(d)当a大于
1
2
时,在不等式左右两边同时除以a,不等号方向不变,且得到
1
a
小于2,根据不等式取解集的方法得出原不等式的解集,综上,得到原不等式在a取值不同情况下的解集.
解答:解:(a)当a=0时,原不等式化为:-x+2>0,
解得:x<2,
∴不等式的解集是{x|x<2};…(3分)
(b)当a<0时,原不等式化为:(x-
1
a
)(x-2)<0,
解得:
1
a
<x<2,
∴不等式的解集是{x|
1
a
<x<2};…(6分)
(c)当0<a≤
1
2
时,原不等式化为:(x-
1
a
)(x-2)>0,且
1
a
>2,
解得:x>
1
a
或x<2,
∴不等式的解集是{x|x>
1
a
或x<2};…(9分)
(d)当a>
1
2
时,原不等式化为:(x-
1
a
)(x-2)>0,且
1
a
<2,
解得:x<
1
a
或x>2,
∴不等式的解集是{x|x<
1
a
或x>2}.…(12分)
点评:此题考查了一元二次不等式的解法,利用了分类讨论的数学思想,分类讨论时要做到不重不漏,考虑问题要全面.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解关于x的不等式
2x2-(a+1)x+1x(x-1)
>1
(其中a>1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0且a≠1,解关于x的不等式:a 3x2-3x+2>a 3x2+2x-3

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:解关于x的不等式:
(a+1)x2-2ax+1
<x
(其中a>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(Ⅰ)求f(x)的解析式;
(Ⅱ)解关于x的不等式
2x2+(a-10)x+5f(x)
>1  (a<0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(x)=kx+b的图象与直线x-y-1=0垂直且在y轴上的截距为3,
(1)求F(x)的解析式;
(2)设a>2,解关于x的不等式
x2-(a+3)x+2a+3f(x)
<1

查看答案和解析>>

同步练习册答案