精英家教网 > 高中数学 > 题目详情
如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
(1)求证:圆心O在直线AD上.
(2)求证:点C是线段GD的中点.
证明:(1)∵AB=AC,AF=AE
∴CD=BE
又∵CF=CD,BD=BE
∴CD=BD
又∵△ABC是等腰三角形,
∴AD是∠CAB的角分线
∴圆心O在直线AD上.
(II)连接DF,由(I)知,DH是⊙O的直径,
∴∠DHF=90°,
∴∠FDH+∠FHD=90°
又∵∠G+∠FHD=90°
∴∠FDH=∠G
∵⊙O与AC相切于点F
∴∠AFH=∠GFC=∠FDH
∴∠GFC=∠G
∴CG=CF=CD
∴点C是线段GD的中点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、如图⊙O内切于△ABC,切点分别为D、E、F;若∠ABC=40°,∠ACB=60°,连接OE、OF,则∠EOF为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(1)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π
3
)=4
的距离的最小值是
 

(2)已知2x+y=1,x>0,y>0,则
x+2y
xy
的最小值是
 

(3)如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E.若AB=6,BC=4,则AE的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

10、如图,△ABC内接于圆⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,则∠AOB=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E,若AB=6,BC=4,则AE的长为(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省豫东、豫北十所名校高三测试理科数学试卷(解析版) 题型:解答题

如图,过半径为4的⊙O上的一点A引半径为3的⊙O′的切线,切点为B,若⊙O与⊙O′内切于点M,连接AM与⊙O′交于c点,求的值.

 

查看答案和解析>>

同步练习册答案