分析 (1)根据线面垂直的判定定理即可证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,利用等体积即可求点B与平面A1CD的距离.
解答 (1)证明:在图甲中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD=$\frac{π}{2}$,
∴BE⊥AC,即在图乙中,BE⊥OA1,BE⊥OC.![]()
又OA1∩OC=O,∴BE⊥平面A1OC.
∵BC∥DE,BC=DE,
∴BCDE是平行四边形,
∴CD∥BE,∴CD⊥平面A1OC. …(6分)
(2)解:由题意,CD=BE=$\sqrt{2}$,平面A1BE⊥平面BCDE,
∴OA1⊥平面BCDE,∴OA1⊥OC
∴A1C=1
∵BE⊥平面A1OC,∴BE⊥A1C
∵CD∥BE,∴CD⊥A1C.
设B到平面A1CD的距离为d,
由$\frac{1}{3}×\frac{1}{2}×1×\sqrt{2}d=\frac{1}{3}×\frac{1}{2}×1×\frac{\sqrt{2}}{2}$,
∴d=$\frac{1}{2}$,故B到平面A1CD的距离为$\frac{1}{2}$ …(12分)
点评 本题考查了平面立体转化的问题,运用好折叠之前,之后的图形,对于空间直线平面的位置关系的定理要很熟练.
科目:高中数学 来源: 题型:选择题
| A. | p或q为真命题 | B. | p且q为假命题 | C. | p且¬q为真命题 | D. | ¬p或q为假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ¬p∨q为真命题 | B. | p∧¬q为假命题 | C. | p∧q为真命题 | D. | p∨q为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 17 | B. | 18 | C. | 19 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{lnπ}{π},0}]$ | B. | [-πlnπ,0] | C. | $[{-\frac{1}{e},\frac{lnπ}{π}}]$ | D. | $[{-\frac{e}{2},-\frac{1}{π}}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com