精英家教网 > 高中数学 > 题目详情
“B=60°”是“△ABC三个内角成等差数列”的(  )
A、充分非必要条件
B、充要条件
C、必要非充分条件
D、既不充分又非必要条件.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:由等差中项的概念结合三角形的内角和定理,结合充要条件的定义,可得答案.
解答: 解:∵三角形的三个内角A,B,C的度数成等差数列,
∴A+C=2B,
又A+C+B=180°,
∴3B=180°,
则B=60°.
当B=60°时,
A+C=120°=2B,
∴三角形的三个内角A,B,C的度数成等差数列,
故“B=60°”是“△ABC三个内角成等差数列”的充要条件,
故选:B.
点评:判断充要条件的方法是:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是集合{k|k可以表示成两个或两个以上的连续正整数的和}中所有的数从小到大排列成的数列,此数列的前n项和为Sn
(1)试判断13,26,32是不是数列{an}中的项,说明理由;
(2)求a100,S100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列7,x,11,y,z,则x=
 
,y=
 
,z=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,1,0)、B(1,2,0)、C(-2,-1,0)、D(3,4,0),则
AB
CD
方向的投影为(  )
A、
3
2
2
B、
3
15
2
C、-
3
2
2
D、-
3
15
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2为椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)与双曲线C2的公共点左右焦点,它们在第一象限内交于点M,
△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2.若椭圆C1的离心率e=
3
8
,则双曲线C2的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求证:3(1+a2+a4)≥(1+a+a22
(2)已知:a2+b2=1,m2+n2=2,证明:-
2
≤am+bn≤
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z1,z2∈C,设A:z12+z22=0,B:z1,z2全为零,则A是B的(  )
A、充分条件
B、必要条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

l1,l2过p(-
2
,0)且互相垂直,l1,l2与双曲线y2-x2=1交于A1,B1及A2,B2
①求l1斜率的取值范围;
②若A1为双曲线的一个顶点,求|A2B2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
1
2
cos2x+
3
2
sinxcosx+1,x∈R.
(1)求它的振幅、周期和初相;
(2)用五点法作出它的简图;
(3)该函数的图象是由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到的?

查看答案和解析>>

同步练习册答案