精英家教网 > 高中数学 > 题目详情
已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.
分析:(1)先求函数的导函数,然后根据1和-1是函数f(x)=x3+ax2+bx的两个极值点,则f'(1)=0,f'(-1)=0,建立方程组,解之即可求出a与b的值;
(2)先求出g'(x)的解析式,求出g'(x)=0的根,判定函数的单调性,从而函数的g(x)的极值点.
解答:解:(1)由f(x)=x3+ax2+bx,得f'(x)=3x2+2ax+b.
∵1和-1是函数f(x)=x3+ax2+bx的两个极值点,
∴f'(1)=3+2a+b=0,f'(-1)=3-2a+b=0,解得a=0,b=-3.
(2)∵由(1)得,f(x)=x3-3x,
∴g'(x)=f(x)+2=x3-3x+2=(x-1)2(x+2),解得x1=x2=1,x3=-2.
∵当x<-2时,g'(x)<0;当-2<x<1时,g'(x)>0,
∴x=-2是g(x)的极值点.
∵当-2<x<1或x>1时,g'(x)>0,∴x=1不是g(x)的极值点.
∴g(x)的极值点是-2.
点评:本题主要考查了利用导数研究函数的极值,同时考查了计算能力和运算求解的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g'(x)=f(x)+2,求g(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;
(3)设h(x)=f(f(x))-c,其中c∈[-2,2],求函数y=h(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省宝鸡市金台区高二(上)期末数学试卷(文科)(解析版) 题型:解答题

已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省蚌埠市五河四中高三(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.

查看答案和解析>>

同步练习册答案