精英家教网 > 高中数学 > 题目详情

已知

(1)已知f(x)=0的两根分别为某三角形两内角的正弦值,求k的范围;

(2)问是否存在实数k,使得方程f(x)=0的两根是直角三角形两个内角的正弦值.

答案:略
解析:

解:(1)f(x)=0的两根,由题设,于是由题意,得

解之得

(2)f(x)=0的一根为sina ,另一根为

由题意得

解得

,解得

故不存在适合条件的实数k


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在自然数集N上定义一个函数y=f(x),已知f(1)+f(2)=5.当x为奇数时,f(x+1)-f(x)=1,当x为偶数时f(x+1)-f(x)=3.
(1)求证:f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列.
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-ax(0<a<1),若x1,x2∈R且x1≠x2,则(  )
A、f(
x1+x2
2
)=
f(x1)+f(x2)
2
B、f(
x1+x2
2
)>
f(x1)+f(x2)
2
C、f(
x1+x2
2
)<
f(x1)+f(x2)
2
D、f(
x1+x2
2
)与
f(x1)+f(x2)
2
的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域是x≠0的一切实数,对于定义域内任意的x1,x2都有f(x1•x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1.
(1)求证f(x)是偶函数;
(2)求证f(x)在(0,+∞)上是增函数;
(3)若f(a+1)>f(a)+1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(0,+∞)上的函数,且对任意正数x,y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0.
(1)证明f(x)在(0,+∞)上为增函数;
(2)若f(3)=1,集合A={x|f(x)>f(x-1)+2},B={x|f(
(a+1)x-1x+1
)>0,a∈R}
,A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案