精英家教网 > 高中数学 > 题目详情
满足条件z•(1+i)=2的复数=
 
分析:化简复数为z=
2
1+i
,然后复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式.
解答:解:由题意可得,z=
2
1+i
=
2(1-i)
(1+i)(1-i)
=1-i

故答案为:1-i
点评:本题考查复数代数形式的乘除运算,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

满足条件z•(1+i)=2的复数=________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足条件z=x+yi(i为虚数单位),则|z-1+2i|的最大值和最小值分别是_____________、_____________.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省扬州中学高三数学综合练习试卷(解析版) 题型:解答题

满足条件z•(1+i)=2的复数=   

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

满足条件z•(1+i)=2的复数=______.

查看答案和解析>>

同步练习册答案