精英家教网 > 高中数学 > 题目详情

判断在定义域上的单调性,并证明.

答案:略
解析:

解:在定义域[0,+∞)上是减函数.

,则

在它的定义域[0,+∞)上是减函数.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)对,都有f(x+y)=f(x)+f(y)
(1)求f(0)的值;
(2)判断并证明f(x)的奇偶性;
(3)若f(x)在定义域上是单调函数且f(1)=2,解不等式f(x)≥f(1-2x)-4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1x

(1)判断函数的奇偶性,并加以证明;
(2)用定义证明f(x)在(0,1)上是减函数;
(3)写出函数f(x)在整个定义域上的单调区间.(直接写出答案,不要求写证明过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

集合C={f(x)|f(x)是在其定义域上的单调增函数或单调减函数},集合D={f(x)|f(x)在定义域内存在区间[a,b],使得f(x)在a,b上的值域是[ka,kb],k为常数}.
(1)当k=
1
2
时,判断函数f(x)=
x
是否属于集合C∩D?并说明理由.若是,则求出区间[a,b];
(2)当k=
1
2
0时,若函数f(x)=
x
+t∈C∩D,求实数t的取值范围;
(3)当k=1时,是否存在实数m,当a+b≤2时,使函数f(x)=x2-2x+m∈D,若存在,求出m的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

记不超过x的最大整数为[x],令{x}=x-[x],则函数y={x}:
①定义域为R;  
②值域为[0,1];
③在定义域上是单调增函数;    
④是周期为1的周期函数;   
⑤是奇函数.
其中正确判断的序号是
①④
①④
(把所有正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上奇函数f(x)=ax3+bx2+cx+d(a≠0),f(1)≠1;且当x∈[1,2]时,函数g(x)=
f(x)x
的值域为[-2,1].
(1)求函数f(x)的解析式;
(2)判断函数f(x)在x∈[1,+∞)上的单调性(不需写出推理过程),并写出f(x)在其定义域上的单调区间;
(3)讨论关于x的方程f(x)-t=0(t∈R)的根的个数.

查看答案和解析>>

同步练习册答案