精英家教网 > 高中数学 > 题目详情

将等差数列381318,…按顺序抄在练习本上,已知每行抄13个数,每页抄21行.求数33 333所在的页和行.

答案:略
解析:

解:每页共13×21273个数字,333333(n1)×5,则n6667,即33333为第6667个数,由整除概念可知33333在第25页第9行.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将n2个正整数1,2,3,…,n2填入n×n方格中,使其每行、每列、每条对角线上的数的和都相等,这个正方形叫做n阶幻方.记f(n)为n阶幻方对角线上数的和,如右图就是一个3阶幻方,可知f(3)=15.已知将等差数列:3,4,5,…前16项填入4×4方格中,可得到一个4阶幻方,则其对角线上数的和f(4)等于(  )
8 3 4
1 5 9
6 7 2
A、36B、42C、34D、44

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力,按视力情况分成8组,得到如图所示的频率分布直方图,但不慎将部分数据丢失,只知道前6组的频数从左到右依次是等比数列{an}的前六项,后3组的频数从左到右依次是等差数列{bn}的前三项.
(1)求数列{an}和{bn}的通项公式;
(2)设数列{cn}满足cn=
35-bn3an
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

第一行是等差数列0,1,2,3,…,2008,将其相邻两项的和依次写下作为第二行,第二行相邻两项的和依次写下作为第三行,依此类推,共写出2008行.
0,1,2,3,…,2005,2006,2007,2008
1,3,5,…,4011,4013,4015
4,8,…,8024,8028

(1)由等差数列性质知,以上数表的每一行都是等差数列.记各行的公差组成数列{di}(i=1,2,3…,2008).求通项公式di
(2)各行的第一个数组成数列{bi}(1,2,3,…,2008),求数列{bi}所有各项的和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将n2个正整数1,2,3,…,n2填入n×n方格中,使其每行、每列、每条对角线上的数的和都相等,这个正方形叫做n阶幻方.记f(n)为n阶幻方对角线上数的和,如右图就是一个3阶幻方,可知f(3)=15.已知将等差数列:3,4,5,…前16项填入4×4方格中,可得到一个4阶幻方,则其对角线上数的和f(4)等于(  )
8 3 4
1 5 9
6 7 2
A.36B.42C.34D.44

查看答案和解析>>

科目:高中数学 来源:浙江省学军中学2010届高三上学期第四次月考(理) 题型:选择题

 将连续个正整数填入的方格中,使其每行、每列、每条对角线上的各数

8

3

4

1

5

9

6

7

2

之和都相等,这个正方形叫做阶幻方数阵,记阶幻方数阵对角线上

各数之和,如图就是一个3阶幻方数阵,可知。若将等差数列3,4,5,6,的前16 项填入方格中,可得到一个4阶幻方数阵,则  (     )

 A.44         B.42          C.40        D.36

 

查看答案和解析>>

同步练习册答案