| A. | 2 | B. | 7 | C. | 9 | D. | 10 |
分析 原函数式变形即可得出$y=(x+1)+\frac{4}{x+1}+5$,由x>-1得出x+1>0,从而根据基本不等式即可求出y的最小值.
解答 解:x>-1;
∴x+1>0;
∴$y=\frac{{x}^{2}+7x+10}{x+1}$
=$\frac{(x+2)(x+5)}{x+1}$
=$\frac{[(x+1)+1][(x+1)+4]}{x+1}$
=$(1+\frac{1}{x+1})[(x+1)+4]$
=$(x+1)+4+1+\frac{4}{x+1}$
=$(x+1)+\frac{4}{x+1}+5$
$≥2\sqrt{4}+5$
=9;
∴y的最小值为9.
故选:C.
点评 考查函数最值的定义,根据基本不等式求函数最值的方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 乙,丁 | B. | 甲,丙 | C. | 甲,丁 | D. | 乙,丙 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 京剧票友 | 一般爱好者 | 合计 | |
| 50岁以上 | 15 | 10 | 25 |
| 50岁以下 | 3 | 12 | 15 |
| 合计 | 18 | 22 | 40 |
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 |
| 0.455 | 0.708 | 1.323 | 2.027 | 2.706 |
| 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m>4+4$\sqrt{2}$ | B. | 0<m<2+2$\sqrt{2}$ | C. | 4-4$\sqrt{2}$<m<4+4$\sqrt{2}$ | D. | 0<m<4+4$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com