精英家教网 > 高中数学 > 题目详情
已知sin(
π
2
+α)=
3
5
,α∈(0,
π
2
),则sin(π+α)=(  )
A、
3
5
B、-
3
5
C、
4
5
D、-
4
5
分析:已知等式利用诱导公式化简求出cosα的值,再由α的范围利用同角三角函数间的基本关系求出sinα的值,原式利用诱导公式化简后将sinα的值代入计算即可求出值.
解答:解:∵sin(
π
2
+α)=cosα=
3
5
,α∈(0,
π
2
),
∴sinα=
1-cos2α
=
4
5

则sin(π+α)=-sinα=-
4
5

故选:D.
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα+cosα=
2
,则tanα+cotα等于(  )
A、-1B、-2C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π2
+α)=m,则cos(π-α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
2
+α)=
1
3
,则cos2α的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)已知sinα-cosα=
2
,α∈(0,π),则sin2α=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(π-α)=-2sin(
π2
+α)
,则tanα=
-2
-2

查看答案和解析>>

同步练习册答案