精英家教网 > 高中数学 > 题目详情
定义在R上的奇函数f(x)满足:f(x)=-f(x+
3
2
),f(-1)=1,则f(1)+f(2)+f(3)+…+f(2012)=(  )
分析:由函数f(x)是奇函数可得f(-1)=-f(1)且f(0)=0,又由f(x)=-f(x+
3
2
)可得函数f(x)的周期为3,由此即可得解
解答:解:∵f(x)是R上的奇函数,且f(-1)=1
∴f(0)=0,f(1)=-f(-1)=-1
又∵f(x)=-f(x+
3
2

∴f(x+
3
2
)=-f(x+3)
∴函数f(x)的周期为T=3∴f(-1)=f(2)=1,f(3)=f(0)=0
∴f(1)+f(2)+f(3)=-1+0+1=0
∴f(1)+f(2)+f(3)+…+f(2012)=670×(f(0)+f(1)+f(3))+f(1)+f(2)=0+(-1)+1=0
故选D
点评:本题考查函数的奇偶性、周期性,要求能深入挖掘奇函数这一条件,会推导抽象函数的周期.属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(2x)=-2f(x),f(-1)=
1
2
,则f(2)的值为(  )
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则不等式xf(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在[0,+∞)是增函数,判断f(x)在(-∞,0)上的增减性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2010x+log2010x,则方程f(x)=0的实根的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x≥0时,f(x)=x3+x2,则f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步练习册答案