精英家教网 > 高中数学 > 题目详情
棱长为2的正方体ABCD-A1B1C1D1的内切球的表面积为(  )
A、
3
B、16π
C、4π
D、
32π
3
分析:根据正方体和内切球半径之间的关系 即可求球的表面积.
解答:解:∵棱长为2的正方体ABCD-A1B1C1D1的内切球的直径等于正方体的棱长,
∴2r=2,即内切球的半径r=1,
∴内切球的表面积为4π.
故选:C.
点评:本题主要考查球的表面积公式的计算,根据正方体的内切球和正方体棱长之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为棱AB和CC1的中点,则线段EF被正方体的内切球球面截在球内的线段长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在棱长为2的正方体ABCD-A1B1C1D1中,E、F、M、H分别为A1D1、CC1、AB、DB1的中点.
(1)求证:EF∥平面ACD1
(2)求证:MH⊥B1C;
(3)在棱BB1上是否存在一点P,使得二面角P-AC-B的大小为30°?若存在,求出BP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为A1D1和CC1的中点
(1)求证:EF∥平面A1C1B;
(2)求异面直线EF与AB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方体ABCD-A1B1C1D1中,点E,F分别是棱AB,BC的中点,则点C1到平面B1EF的距离是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(文)如图,在棱长为2的正方体ABCD-A1B1C1D1中,点E、F分别是棱AB、AD的中点.求:
(1)异面直线BC1与EF所成角的大小;
(2)三棱锥A1-EFC的体积V.

查看答案和解析>>

同步练习册答案