已知函数
.
(Ⅰ)若曲线
在点
处的切线与直线
垂直,求函数
的单调区间;
(Ⅱ)若对于
都有
成立,试求
的取值范围;
(Ⅲ)记
.当
时,函数
在区间
上有两个零点,求实数
的取值范围.
解:(Ⅰ)由题意可设椭圆
的方程为
,
.I) 直线
的斜率为1.
由题意知![]()
解得
,
.
故椭圆
的方程为
,离心率为
.……6分
(Ⅱ)以
为直径的圆与直线
相切.
证明如下:由题意可设直线
的方程为![]()
.
则点
坐标为
,
中点
的坐标为
.
由
得
.
设点
的坐标为
,则
.
所以
,
. ……………………………10分
因为点
坐标为
,
当
时,点
的坐标为
,点
的坐标为
.
直线
轴,此时以
为直径的圆
与直线
相切.
当
时,则直线
的斜率
.
所以直线
的方程为
.
点
到直线
的距离![]()
.
又因为
,所以
.
故以
为直径的圆与直线
相切.
综上得,当直线
绕点
转动时,以
为直径的圆与直线
相切解: (
函数
的定义域为
,
因为
,所以
,所以
.
所以
.
.
由
解得
;由
解得
.
所以
的单调增区间是
,单调减区间是
. ……………………4分
(II)
,
由
解得
;由
解得
.
所以
在区间
上单调递增,在区间
上单调递减.
所以当
时,函数
取得最小值,
.
因为对于
都有
成立,
所以
即可.
则
. 由
解得
.
所以
的取值范围是
. ………………………………8分
(III)依题得
,则
.
由
解得
;由
解得
.
所以函数
在区间
为减函数,在区间
为增函数.
又因为函数
在区间
上有两个零点,所以![]()
解得
.
所以
的取值范围是
. ………………………………………13分
科目:高中数学 来源: 题型:
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
查看答案和解析>>
科目:高中数学 来源:2014届黑龙江省海林市高二下学期期中考试理科数学试卷(解析版) 题型:解答题
已知函数
,![]()
(1)若曲线
与曲线
在它们的交点(1,c)处具有公共切线,求
,
的值;
(2)当
,
时,若函数
在区间[
,2]上的最大值为28,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江苏省如东县高三12月四校联考文科数学试卷(解析版) 题型:解答题
(本小题满分16分)
已知函数
,
(1)若
在
上的最大值为
,求实数
的值;
(2)若对任意
,都有
恒成立,求实数
的取值范围;
(3)在(1)的条件下,设
,对任意给定的正实数
,曲线
上是否存在两点
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上?请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com