求函数y=
的图像上点(2,
)处的切线方程.
科目:高中数学 来源:广东省翠园中学2011-2012学年高二上学期期中考试数学文科试题 题型:044
先后抛掷一枚骰子两次,将得到的点数分别记为a,b.
(1)求a+b=4的概率;
(2)求点(a,b)在函数y=2x图像上的概率;
(3)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
查看答案和解析>>
科目:高中数学 来源:山东省郓城一中2012届高三上学期寒假作业数学试卷(4) 题型:044
设函数f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≠0时,求函数f(x)的极大值和极小值;
(Ⅲ)当a=2时,是否存在函数y=f(x)图像上两点以及函数y=
(x)图像上两点,使得以这四点为顶点的四边形ABCD满足如下条件:
①四边形ABCD是平行四边形;
②AB⊥x轴;
③|AB|=4.若存在,指出四边形ABCD的个数;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:广东省实验中学2012届高三下学期综合测试(一)数学文科试题 题型:044
设函数f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a>0时,求函数f(x)的极大值和极小值;
(Ⅲ)当a=2时,是否存在函数y=f(x)图像上两点以及函数y=
(x)图像上两点,使得以这四点为顶点的四边形ABCD同时满足如下三个条件:①四边形ABCD是平行四边形:②AB⊥x轴;③|AB|=4.
若存在,指出四边形ABCD的个数;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).
(1)求函数y=g(x)-x在[0,1]上的最小值;
(2)当a≥
时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.
(3)当x≥0时,g(x)≥-
f(x)+
恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com