精英家教网 > 高中数学 > 题目详情
从某校随机抽取了100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图),由图中数据可知m=______,所抽取的学生中体重在45~50kg的人数是______.
精英家教网
由频率分步直方图知,
(0.02+m+0.06+0.02)×5=1,
∴m=0.1,
∴所抽取的体重在45~50kg的人数是0.1×5×100=50人,
故答案为:0.1;50
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网某校高一年级共有学生320人.为调查高一年级学生每天晚自习自主支配学习时间(指除了完成教师布置的作业后学生根据自己的需要进行学习的时间)情况,学校采用随机抽样的方法从高一学生中抽取了n名学生进行问卷调查.根据问卷得到了这n名学生每天晚自习自主支配学习时间的数据(单位:分钟),按照以下区间分为七组:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到频率分布直方图如图.已知抽取的学生中每天晚自习自主支配学习时间低于20分钟的人数是4人.
(Ⅰ)求n的值;
(Ⅱ)若高一全体学生平均每天晚自习自主支配学习时间少于45分钟,则学校需要减少作业量.根据以上抽样调查数据,学校是否需要减少作业量?(注:统计方法中,同一组数据常用该组区间的中点值作为代表)
(Ⅲ)问卷调查完成后,学校从第3组和第4组学生中利用分层抽样的方法抽取7名学生进行座谈,了解各学科的作业布置情况,并从这7人中随机抽取两名学生聘为学情调查联系人,设第3组中学生被聘的人数是X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关一模)某校为了解高二学生A,B两个学科学习成绩的合格情况是否有关,随机抽取了该年级一次期末考试A,B两个学科的合格人数与不合格人数,得到以下2X2列联表:
A学科合格人数 A学科不合格人数 合计
B学科合格人数 40 20 60
B学科不合格人数 20 30 50
合计 60 50 110
(1)据此表格资料,你认为有多大把握认为“A学科合格”与“B学科合格”有关;
(2)从“A学科合格”的学生中任意抽取2人,记被抽取的2名学生中“B学科合格”的人数为X,求X的数学期望.
附公式与表:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005
K 2.072 2.706 3.841 5.024 6.635 7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•绵阳一模)
分组 频数 频率
(3.9,4.2] 4 0.08
(4.2,4.5] 5 0.10
(4.5,4.8] 25 m
(4.8,5.1] x y
(5.1,5.4] 6 0.12
合计 n 1.00
为了解我市高三学生的视力状况,绵阳市某医疗卫生机构于2011年9月对某校高三学生进行了一次随机抽样调查.已知该校高三的男女生人数的比例为4:1,调查时根据性别采用分层抽样的方式随机抽取了一部分学生作为样本.现将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…(5.1,5.4].经过数据处理,得到如频率分布表:
(1)求频率分布表中未知量x,y,m,n的值;
(2)从样本中视力在(4.2,4.5]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率;
(3)若该校某位高三女生被抽进本次调查的样本的概率为
1
13
,请你根据本次抽样调查的结果估计该校高三学生中视力高于4.8的人数.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省韶关市高三第一次调研测试数学理科试卷(解析版) 题型:解答题

某校为了解高二学生两个学科学习成绩的合格情况是否有关, 随机抽取了该年级一次期末考试两个学科的合格人数与不合格人数,得到以下22列联表:

 

学科合格人数

学科不合格人数

合计

学科合格人数

40

20

60

学科不合格人数

20

30

50

合计

60

50

110

(1)据此表格资料,你认为有多大把握认为“学科合格”与“学科合格”有关;

(2)从“学科合格”的学生中任意抽取2人,记被抽取的2名学生中“学科合格”的人数为,求的数学期望.

附公式与表:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

 

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二上学期第二次月考文科数学试卷 题型:解答题

某校高一年级共有320人,为调查高一年级学生每天晚自习自主支配学习时间(指除了完成老师布置的作业后学生根据自己的需要进行学习的时间)情况,学校采用随机抽样的方法从高一学生中抽取了n名学生进行问卷调查.根据问卷得到了这n名学生每天晚自习自主支配学习时间的数据(单位:分钟),按照以下区间分为七组:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到频率分布直方图如图.已知抽取的学生中每天晚自习自主支配学习时间低于20分钟的人数是4人.

(1)求n的值;

(2)若高一全体学生平均每天晚自习自主支配学习时间少于45分钟,则学校需要减少作业量.根据以上抽样调查数据,学校是否需要减少作业量?

(注:统计方法中,同一组数据常用该组区间的中点值作为代表)

(3)问卷调查完成后,学校从第3组和第4组学生中利用分层抽样的方法抽取7名学生进行座谈,了解各学科的作业布置情况,并从这7人中随机抽取两名学生聘为学情调查联系人。求第3组中至少有1名学生被聘为学情调查联系人的概率。

 

 

 

查看答案和解析>>

同步练习册答案