精英家教网 > 高中数学 > 题目详情
在一次购物抽奖活动中,假设某10张券中有一等奖1张,可获得价值50元的奖品;二等奖3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从10张券中任抽2张,求该顾客中奖的概率.

思路分析:假设某人是按照先后的顺序从10张券中任抽2张,则构成事件的总数为10×9=90.且每个基本事件出现的机会是均等的,属于古典概型.

解:记“从10张中任取2张中奖”为事件A,“从10张中任取2张不中奖”为事件B,事件B包含的事件总数为6×5=30.由古典概型的概率公式得P(B)=.

所以P(A)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率;
(2)求该顾客获得的奖品总价值不少于50元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率
(2)该顾客获得的奖品总价值ξ(元)的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次购物抽奖活动中,假设某6张券中有一等奖券1张,可获价值50元的奖品;有二等奖券1张,每张可获价值20元的奖品;其余4张没有奖.某顾客从此6张中任抽1张,求:
(1)该顾客中奖的概率;
(2)该顾客参加此活动可能获得的奖品价值的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年龙岩一中冲刺文)(12分)

在一次购物抽奖活动中,假设10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,可获价值10元的奖品;其余6张没有奖. 某顾客从此10张奖券中任抽2张,求:

(1)该顾客中奖的概率;

(2)该顾客获得的奖品总价值不低于20元的概率.

查看答案和解析>>

同步练习册答案