精英家教网 > 高中数学 > 题目详情

已知四棱锥P-ABCD的底面ABCD是菱形;PA⊥平面ABCD,PA=AD=AC,点F为PC的中点.

(Ⅰ)求证:PA∥平面BFD;

(Ⅱ)求二面角P―BF―D的大小.

答案:
解析:

  (Ⅰ)证明连结交于点,连结是菱形,∴的中点.的中点,∴平面平面,∴平面

  (Ⅱ)解法一:

  平面平面,∴.

  ,∴是菱形,∴

  

  ∴平面

  作,垂足为,连接,则

  所以为二面角的平面角.

  ,∴

  在Rt△中,,∴

  ∴二面角的大小为

  二面角的平面角与二面角的平面角互补

  ∴二面角的大小为

  解法二:如图,以点为坐标原点,线段的垂直平分线所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系,令

  则

  ∴.设平面的一个法向量为

  由,得

  令,则,∴

  平面平面

  ∴

  ,∴

  是菱形,∴

  ,∴平面

  ∴是平面的一个法向量,

  ∴

  ∴,∴.13分

  ∴二面角的大小为

  ∴二面角的大小为


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,
平面PBC垂直平面ABCD,试探求直线PA与BD的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求证:AB∥平面PCD
(2)求证:BC⊥平面PAC
(3)求二面角A-PC-D的平面角a的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求此时异面直线AE和CH所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

同步练习册答案