精英家教网 > 高中数学 > 题目详情

如图,直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠ABC=45°.
(1)求直三棱柱ABC-A1B1C1的体积;
(2)若D是AC的中点,求异面直线BD与A1C所成的角.

解:(1)∵AB=AC=2,∠ABC=45°,∴∠BAC=90°,∴
又AA1=2,∴直三棱柱ABC-A1B1C1的体积V=S△ABC×AA1=2×2=4.
∴直三棱柱ABC-A1B1C1的体积为4.
(2)取AA1的中点M,连接DM,BM,
∵D是AC的中点,∴DM∥A1C,
∴∠BDM是异面直线BD与A1C所成的角.
在△BDM中,.即
∴异面直线BD与A1C所成的角为
分析:(1)利用三棱柱的体积计算公式即可得出;
(2)利用三角形的中位线定理和异面直线所成的角的定义即可得出.
点评:熟练掌握三棱柱的体积计算公式、三角形的中位线定理和异面直线所成的角的定义是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案