精英家教网 > 高中数学 > 题目详情
f(x)=,且当x∈(-∞,1]时f(x)有意义,求实数a的取值范围.

欲使x∈(-∞,1]时,f(x)有意义,需1+2x+4xa>0恒成立,也就是a>-[()x+()x](x≤1)恒成立.

u(x)= -[()x+()x]在(-∞,1]上是增函数,∴当x=1时,u(x)max=-.

于是,可知当a>-时,满足题意,

a的取值范围为(-,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中a2+b2≠0且ω>0.设f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在区间[0,2π]内的解集;
(2)若点A是过点(-1,1)且法向量为
n
=(-1,1)
的直线l上的动点.当x∈R时,设函数f(x)的值域为集合M,不等式x2+mx<0的解集为集合P.若P⊆M恒成立,求实数m的最大值;
(3)根据本题条件我们可以知道,函数f(x)的性质取决于变量a、b和ω的值.当x∈R时,试写出一个条件,使得函数f(x)满足“图象关于点(
π
3
,0)
对称,且在x=
π
6
处f(x)取得最小值”.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=λ1(
a
3
x3+
b-1
2
x2+x)+λ2x•3x(a,b∈R,a>0)

(1)当λ1=1,λ2=0时,设x1,x2是f(x)的两个极值点,
①如果x1<1<x2<2,求证:f'(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)时,函数g(x)=f'(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.
(2)当λ1=0,λ2=1时,
①求函数y=f(x)-3(ln3+1)x的最小值.
②对于任意的实数a,b,c,当a+b+c=3时,求证3aa+3bb+3cc≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x),g(x)是定义域为R的恒大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时,下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=lg,且当x∈(-∞,1]时f(x)有意义,求实数a的取值范围.

查看答案和解析>>

同步练习册答案