精英家教网 > 高中数学 > 题目详情
已知F(x)=
x0
(t2+2t-8)
dt,(x>0).
(1)求F(x)的单调区间;
(2)求函数F(x)在[1,3]上的最值.
依题意得,F(x)=
x0
(t2+2t-8)dt=(
1
3
t3+t2-8t)
|x0
=
1
3
x3+x2-8x

定义域是(0,+∞).(2分)
(1)F'(x)=x2+2x-8,
令F'(x)>0,得x>2或x<-4; 令F'(x)<0,得-4<x<2,
且函数定义域是(0,+∞),
∴函数F(x)的单调增区间是(2,+∞),单调递减区间是(0,2).(6分)
(2)令F'(x)=0,得x=2(x=-4舍),
由于函数在区间(0,2)上为减函数,区间(2,3)上为增函数,
F(1)=-
20
3
F(2)=-
28
3
,F(3)=-6,
∴F(x)在[1,3]上的最大值是F(3)=-6,最小值是F(2)=-
28
3
.(10分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=(
1
3
x-log2x,实数a、b、c满足f(a)f(b)f(c)<0,(0<a<b<c)若实数x0是方程f(x)=0的一个解,那么下列不等式中,不可能成立的是(  )
A、x0<a
B、x0>b
C、x0<c
D、x0>c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log2
1-x
1+x
 (-1<x<1).
(1)若f(a)+f(b)=0,求证:a+b=0;
(2)设f(
1
2
)+f(
1
3
)=f(x0)
,求x0的值;
(3)设x1、x2∈(-1,1),是否存在x3∈(-1,1),使得f(x1)+f(x2)=f(x3),若存在,求出x3,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(x)=
x
0
(t2+2t-8)
dt,(x>0).
(1)求F(x)的单调区间;
(2)求函数F(x)在[1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-lnx,g(x)=-
1
2
ax2+(2a-1)x
,A∈R.
(Ⅰ)当x∈(0,e]时,f(x)的最小值是3,求a的值;
(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=
x1+x2
2
;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.试问:函数G(x)=g(x)-f(x),是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

同步练习册答案