精英家教网 > 高中数学 > 题目详情

已知函数对一切实数成立,且(1)求的值;(2)求的解析式;(3)若函数在区间(—1,2)上是减函数,求实数a的取值范围.

解:(1)令 …………2分

   (2)令  …………4分

   (3)

-------------13分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.
(Ⅰ)用xn表示xn+1
(Ⅱ)证明:对一切正整数n,xn+1≤xn的充要条件是x1≥2
(Ⅲ)若x1=4,记an=lg
xn+2xn-2
,证明数列{an}成等比数列,并求数列{xn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x+1|+|2x-3|+a.
(Ⅰ)当a=0时,解不等式f(x)≥6;
(Ⅱ)若不等式f(x)≥a2对一切实数x恒成立时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年四川卷理)(12分)已知函数,设曲线在点处的切线与轴的交点为,其中为正实数.

(Ⅰ)用表示

(Ⅱ) 证明:对一切正整数的充要条件是

(Ⅲ)若,记,证明数列成等比数列,并求数列的通项公式。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年贵州省遵义四中高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=|2x+1|+|2x-3|+a.
(Ⅰ)当a=0时,解不等式f(x)≥6;
(Ⅱ)若不等式f(x)≥a2对一切实数x恒成立时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年贵州省遵义四中高三(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=|2x+1|+|2x-3|+a.
(Ⅰ)当a=0时,解不等式f(x)≥6;
(Ⅱ)若不等式f(x)≥a2对一切实数x恒成立时,求实数a的取值范围.

查看答案和解析>>

同步练习册答案