精英家教网 > 高中数学 > 题目详情
为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A、B、C三个区中抽取6个工厂进行调查.已知A、B、C区中分别有18,27,9个工厂.
(1)求从A、B、C区中应分别抽取的工厂个数;
(2)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A区的概率.
(1)工厂总数为18+27+9=54,样本容量与总体中的个体数的比为
6
54
=
1
9
,所以从A,B,C三个区中应分别抽取的工厂个数为2,3,1.…(5分)
(2)设A1,A2为在A区中抽得的2个工厂,B1,B2,B3为在B区中抽得的3个工厂,C1为在C区中抽得的1个工厂.在这6个工厂中随机地抽取2个,全部可能的结果有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1)共15种.
随机地抽取的2个工厂至少有1个来自A区(记为事件X)的结果有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A2,B1),(A2,B2),(A2,B3),(A2,C1)共9种.所以这2个工厂中至少有1个来自A区的概率为P(X)=
9
15
=
3
5
.…(11分)
答:(1)从A,B,C三个区中应分别抽取的工厂个数为2,3,1.(2)这2个工厂中至少有1个来自A区的概率为
3
5
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•成都模拟)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A、B、C三个区中抽取6个工厂进行调查.已知A、B、C区中分别有18,27,9个工厂.
(1)求从A、B、C区中应分别抽取的工厂个数;
(2)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A区的概率.

查看答案和解析>>

科目:高中数学 来源:2015届贵州省高二上学期期末考试文科数学试卷(解析版) 题型:解答题

为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从三个区中抽取6个工厂进行调查.已知区中分别有27,18,9个工厂.

(Ⅰ)求从区中应分别抽取的工厂个数;

(Ⅱ)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自区的概率.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三下学期开学考试文科数学 题型:解答题

为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A、B、C三个区中抽取6个工厂进行调查.已知A、B、C区中分别有18,27,9个工厂.

(1)求从A、B、C区中应分别抽取的工厂个数;

(2)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A区的概率。

 

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期第二次月考文科数学试卷 题型:解答题

为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A、B、C三个区中抽取6个工厂进行调查.已知A、B、C区中分别有18, 27,9个工厂.

(1)求从A、B、C区中应分别抽取的工厂个数;

(2)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A区的概率。

 

查看答案和解析>>

科目:高中数学 来源:广州省2009-2010学年高一学科竞赛 题型:解答题

为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从三个区中抽取7个工厂进行调查,已知区中分别有18、27、18个工厂。

   (1)求从区中应分别抽取的工厂个数;

   (2)若从抽得的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自区的概率。

 

查看答案和解析>>

同步练习册答案