精英家教网 > 高中数学 > 题目详情

若函数f(x)=数学公式的定义域为R,则a的取值范围为________.

[-1,0]
分析:由函数f(x)=的定义域为R,知x2-2ax-a≥0的解集为R,由此能求出a的取值范围.
解答:∵函数f(x)=的定义域为R,
∴x2-2ax-a≥0的解集为R,
∴△=4a2+4a≤0,
解得-1≤a≤0.
故答案为:[-1,0].
点评:本题考查函数的定义域的求法,是基础题.解题时要认真审题,仔细解答,注意一元二次不等式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求证:an≥n+2;
②若a1=4,试比较
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求证:an≥n+2;
②若a1=4,试比较
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源:模拟题 题型:解答题

已知函数
(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且
①若a1≥3,求证:an≥n+2;
②若a1=4,试比较的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省武汉市黄陂一中高三数学滚动检测试卷3(8.20)(解析版) 题型:解答题

已知函数
(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且
①若a1≥3,求证:an≥n+2;
②若a1=4,试比较的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省南充高中高三第六次月考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且
①若a1≥3,求证:an≥n+2;
②若a1=4,试比较的大小,并说明你的理由.

查看答案和解析>>

同步练习册答案