精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和Sn与通项an之间满足a1=1,Sn=n2an,求an

答案:
解析:

  解:当n≥2时,

  Sn-Sn-1=n2an-(n-1)2an-1=an

  (n2-1)an=(n-1)2an-1

  (n+1)an=(n-1)an-1

  ∴

  ∴···…······…···,=

  又由S2=a1+a2=22·a23a2=a1,a2

  ∴an(n≥2).此通项公式对n=1也成立.

  ∴an

  思路分析:本题除给出初始条件a1=1之外,还给了前n项和Sn与通项an之间的关系式Sn=n2an.为求an,需考虑使用公式an=Sn-Sn-1,从而把Sn与Sn-1之间的关系转化为an与an-1之间的递推关系.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案