ÒÑÖªµãPn£¨an£¬bn£©£¨n¡ÊN*£©Âú×ãan+1=anbn+1£¬bn+1=
bn
1-4
a
2
n
£¬ÇÒµãP1µÄ×ø±êΪ£¨1£¬-1£©£®
£¨¢ñ£©Çó¾­¹ýµãP1£¬P2µÄÖ±ÏßlµÄ·½³Ì£»
£¨¢ò£© ÒÑÖªµãPn£¨an£¬bn£©£¨n¡ÊN*£©ÔÚP1£¬P2Á½µãÈ·¶¨µÄÖ±ÏßlÉÏ£¬ÇóÖ¤£ºÊýÁÐ{
1
an
}
ÊǵȲîÊýÁУ®
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Çó¶ÔÓÚËùÓÐn¡ÊN*£¬ÄÜʹ²»µÈʽ£¨1+a1£©£¨1+a2£©¡­£¨1+an£©¡Ýk
1
b2b3¡­bn+1
³ÉÁ¢µÄ×î´óʵÊýkµÄÖµ£®
·ÖÎö£º£¨¢ñ£©ÓÉb2=
b1
1-4a12
=
1
3
£¬ÖªP2(
1
3
£¬
1
3
)
£®ÓÉ´ËÖª¹ýµãP1£¬P2µÄÖ±ÏßlµÄ·½³ÌΪ2x+y=1£®
£¨¢ò£©ÓÉPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬Öª2an+bn=1£®¹Êbn+1=1-2an+1£®ÓÉan+1=anbn+1£¬µÃan+1=an-2anan+1£®ÓÉ´ËÖª{
1
an
}
Êǹ«²îΪ2µÄµÈ²îÊýÁУ®
£¨¢ó£©ÓÉ
1
an
=
1
a1
+2(n-1)
£®£¬Öª
1
an
=1+2(n-1)=2n-1
£®ËùÒÔan=
1
2n-1
£¬bn=1-2an=
2n-3
2n-1
£®ÒÀÌâÒâk¡Ü(1+a1)(1+a2)(1+an)
b2b3bn+1
ºã³ÉÁ¢£®ÉèF(n)=(1+a1)(1+a2)(1+an)
b2b3bn+1
£¬ËùÒÔÖ»ÐèÇóÂú×ãk¡ÜF£¨n£©µÄF£¨n£©µÄ×îСֵ£®
½â´ð£º½â£º£¨¢ñ£©ÒòΪb2=
b1
1-4a12
=
1
3
£¬ËùÒÔa2=a1b2=
1
3
£®ËùÒÔP2(
1
3
£¬
1
3
)
£®£¨1·Ö£©
ËùÒÔ¹ýµãP1£¬P2µÄÖ±ÏßlµÄ·½³ÌΪ2x+y=1£®£¨2·Ö£©
£¨¢ò£©ÒòΪPn£¨an£¬bn£©ÔÚÖ±ÏßlÉÏ£¬ËùÒÔ2an+bn=1£®ËùÒÔbn+1=1-2an+1£®£¨3·Ö£©
ÓÉan+1=anbn+1£¬µÃan+1=an£¨1-2an+1£©£®¼´an+1=an-2anan+1£®
ËùÒÔ
1
an+1
-
1
an
=2
£®ËùÒÔ{
1
an
}
Êǹ«²îΪ2µÄµÈ²îÊýÁУ®£¨5·Ö£©
£¨¢ó£©ÓÉ£¨¢ò£©µÃ
1
an
=
1
a1
+2(n-1)
£®
ËùÒÔ
1
an
=1+2(n-1)=2n-1
£®
ËùÒÔan=
1
2n-1
£®£¨7·Ö£©
ËùÒÔbn=1-2an=
2n-3
2n-1
£®£¨8·Ö£©
ÒÀÌâÒâk¡Ü(1+a1)(1+a2)(1+an)
b2b3bn+1
ºã³ÉÁ¢£®
ÉèF(n)=(1+a1)(1+a2)(1+an)
b2b3bn+1
£¬
ËùÒÔÖ»ÐèÇóÂú×ãk¡ÜF£¨n£©µÄF£¨n£©µÄ×îСֵ£®£¨10·Ö£©
ÒòΪ
F(n+1)
F(n)
=
(1+a1)(1+a2)(1+an)(1+an+1)
b2b3bn+2
(1+a1)(1+a2)(1+an)
b2b3bn+1

=(1+an+1)
bn+2
=
2n+2
2n+1
2n+3
=
4n2+8n+4
4n2+8n+3
£¾1
£¬
ËùÒÔF£¨n£©£¨x¡ÊN*£©ÎªÔöº¯Êý£®£¨12·Ö£©
ËùÒÔF(n)min=F(1)=
2
3
=
2
3
3
£®
ËùÒÔk¡Ü
2
3
3
£®ËùÒÔkmax=
2
3
3
£®£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë½âÎö¼¸ºÎµÄ×ÛºÏÔËÓã¬ÄѶȽϴ󣬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØÑ¡Óù«Ê½£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Àí£©ÒÑÖªµãA£¨1£¬0£©£¬B£¨0£¬1£©ºÍ»¥²»ÏàͬµÄµãP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­£¬Âú×ã
OPn
=an
OA
+bn
OB
(n¡ÊN*)
£¬OÎª×ø±êÔ­µã£¬ÆäÖÐ{an}¡¢{bn}·Ö±ðΪµÈ²îÊýÁк͵ȱÈÊýÁУ¬P1ÊÇÏß¶ÎABµÄÖе㣬¶ÔÓÚ¸ø¶¨µÄ¹«²î²»ÎªÁãµÄan£¬¶¼ÄÜÕÒµ½Î¨Ò»µÄÒ»¸öbn£¬Ê¹µÃP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­£¬¶¼ÔÚÒ»¸öÖ¸Êýº¯Êý
 
£¨Ð´³öº¯ÊýµÄ½âÎöʽ£©µÄͼÏóÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµã¼¯L={£¨x£¬y£©|y=
m
n
}£¬ÆäÖÐ
m
=£¨2x-b£¬1£©£¬
n
=£¨1£¬b+1£©£¬µãÁÐPn£¨an£¬bn£©£¨n¡ÊN+£©ÔÚLÖУ¬p1ΪLÓëyÖáµÄ½»µã£¬ÊýÁÐ{an}Êǹ«²îΪ1µÄµÈ²îÊýÁУ®
£¨¢ñ£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ò£©Èôf£¨n£©=
an£¬(nÎªÆæÊý)
bn£¬(nΪżÊý)
£¬ÁîSn=f£¨1£©+f£¨2£©+f£¨3£©+¡­+f£¨n£©£¬ÊÔд³öSn¹ØÓÚnµÄ±í´ïʽ£»
£¨¢ó£©Èôf£¨n£©=
an£¬(nÎªÆæÊý)
bn£¬(nΪżÊý)
£¬¸ø¶¨ÆæÊým£¨mΪ³£Êý£¬m¡ÊN+£¬m£¾2£©£®ÊÇ·ñ´æÔÚk¡ÊN+£¬£¬Ê¹µÃ
f£¨k+m£©=2f£¨m£©£¬Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµã¼¯L={(x£¬y)|y=
m
n
}
£¬ÆäÖÐ
m
=£¨2x-b£¬1£©£¬
n
=£¨1£¬b+1£©£¬µãÁÐPn£¨an£¬bn£©ÔÚLÖУ¬P1ΪLÓëyÖáµÄ½»µã£¬µÈ²îÊýÁÐ{an}µÄ¹«²îΪ1£¬n¡ÊN*£®
£¨I£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ò£©Èôf(n)=
an  nΪÕýÆæÊý
bn  nΪÕýżÊý
£¬ÁîSn=f£¨1£©+f£¨2£©+f£¨3£©+¡­+f£¨n£©£»ÊÔд³öSn¹ØÓÚnµÄº¯Êý½âÎöʽ£»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµã¼¯L={(x£¬y)|y=
m
n
}
£¬ÆäÖÐ
m
=(2x-b£¬1)£¬
n
=(1£¬1+b)
£¬ÓÖÖªµãÁÐPn£¨an£¬bn£©¡ÊL£¬P1ΪLÓëyÖáµÄ½»µã£®µÈ²îÊýÁÐ{an}µÄ¹«²îΪ1£¬n¡ÊN*£®
£¨¢ñ£©ÇóPn£¨an£¬bn£©£»
£¨¢ò£©Èôf(n)=
an£¬n=2k-1
bn£¬n=2k
k¡ÊN*£¬f(k+11)=2f(k)
£¬Çó³ökµÄÖµ£»
£¨¢ó£©¶ÔÓÚÊýÁÐ{bn}£¬ÉèSnÊÇÆäǰnÏîºÍ£¬ÊÇ·ñ´æÔÚÒ»¸öÓënÎ޹صij£ÊýM£¬Ê¹
Sn
S2n
=M
£¬Èô´æÔÚ£¬Çó³ö´Ë³£ÊýM£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµã¼¯L={(x£¬y)|y=
m
n
}
£¬ÆäÖÐ
m
=(2x-b£¬1)£¬
n
=(1£¬b+1)
£¬µãÁÐPn£¨an£¬bn£©ÔÚLÖУ¬P1ΪLÓëyÖáµÄ½»µã£¬µÈ²îÊýÁÐ{an}µÄ¹«²îΪ1£¬n¡ÊN+£®
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©Èôf(n)=
an(n=2k-1)
bn(n=2k)
(k¡ÊN+)
£¬ÊÇ·ñ´æÔÚk¡ÊN+ʹµÃf£¨k+11£©=2f£¨k£©£¬Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÇóÖ¤£º
1
|P1P2|2
+
1
|P1P3|2
+¡­+
1
|P1Pn|2
£¼
2
5
£¨n¡Ý2£¬n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸