精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.

(Ⅰ)求证:平面

(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点  的位置并证明,若不存在,请说明理由;

(Ⅲ)求二面角的余弦值.

解法一:

(Ⅰ)因为 ,所以.

又因为侧面底面,且侧面底面

所以底面.

底面

所以.

在底面中,因为

所以 , 所以.

    又因为,  所以平面.  ……4分

(Ⅱ)在上存在中点,使得平面

证明如下:设的中点是

连结

,且.

由已知

所以. 又

所以,且

所以四边形为平行四边形,所以.

    因为平面平面

所以平面.       ……8分

(Ⅲ)设中点,连结

.

又因为平面平面

所以 平面.

连结,由三垂线定理可知.

所以是二面角的平面角.

,则, .

中,,所以.

所以 .

即二面角的余弦值为.         ……12分

解法二:

因为

所以.

又因为侧面底面

且侧面底面

所以 底面.

又因为

所以两两垂直.

分别以轴,

轴,轴建立空间直角坐标系,如图.

,则

(Ⅰ),

所以 ,所以.

又因为, 所以平面.   ……4分

(Ⅱ)设侧棱的中点是, 则.

     设平面的一个法向量是,则  

因为

所以    取,则.

所以, 所以.

因为平面,所以平面.    ……8分

(Ⅲ)由已知,平面,所以为平面的一个法向量.

由(Ⅱ)知,为平面的一个法向量.

设二面角的大小为,由图可知,为锐角,

所以.

即二面角的余弦值为.           ……12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案