精英家教网 > 高中数学 > 题目详情
如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿对角线AC折起后如图2所示(点D记为点P),点P在平面ABC上的正投影E落在线段AB上,连接PB.
(1)求直线PC与平面PAB所成的角的大小;
(2)求二面角P﹣AC﹣B的大小的余弦值.
(1)解:在图1中,∵∠ABC=∠DAB=90°,∠CAB=30°,BC=1,
,∠DAC=60°
∵AD=CD,
∴△DAC为等边三角形.
∴AD=CD=AC=2.
在图2中, ∵点E为点P在平面ABC上的正投影, ∴PE⊥平面ABC.
∵BC平面ABC, ∴PE⊥BC.
∵∠CBA=90°, ∴BC⊥AB.
∵PE∩AB=E,PE平面PAB,AB平面PAB,
∴BC⊥平面PAB.
∴∠CPB为直线PC与平面PAB所成的角.
在Rt△CBP中,BC=1,PC=DC=2,
 . ∵0°<∠CPB<90°, ∴∠CPB=30°.
∴直线PC与平面PAB所成的角为30°.
(2)解:取AC的中点F,连接PF,EF.
∵PA=PC, ∴PF⊥AC.
∵PE⊥平面ABC,AC平面ABC,
∴PE⊥AC.
∵PF∩PE=P,PF平面PEF,PE平面PEF,
∴AC⊥平面PEF.
∵EF平面PEF,
∴EF⊥AC.
∴∠PFE为二面角P﹣AC﹣B的平面角.
在Rt△EFA中,
∴EF=AFtan30°=
在Rt△PFA中,
在Rt△PEF中,
∴二面角P﹣AC﹣B的大小的余弦值为.

                             图1                                                            图2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)如图1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,AE⊥BD.将△ABD沿对角线BD折起(图2),记折起后点A的位置为P且使平面PBD⊥平面BCD.
(1)求三棱锥P-BCD的体积;
(2)求平面PBC与平面PCD所成二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=2,AD=4.把△DAC沿对角线AC折起到△PAC的位置,如图2所示,使得点P在平面ABC上的正投影H恰好落在线段AC上,连接PB,点E,F分别为线段PA,PB的中点.
(Ⅰ)求证:平面EFH∥平面PBC;
(Ⅱ)求直线HE与平面PHB所成角的正弦值;
(Ⅲ)在棱PA上是否存在一点M,使得M到P,H,A,F四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=
12
AB=2
,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(1)求证:DA⊥BC;
(2)在CD上找一点F,使AD∥平面EFB;
(3)求点A到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图1,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,CD=6,AD=3,E为CD上一点,且DE=4,过E作EF∥AD交BC于F现将△CEF沿EF折起到△PEF,使∠PED=60°,如图2.
(Ⅰ)求证:PE⊥平面ADP;
(Ⅱ)求异面直线BD与PF所成角的余弦值;
(Ⅲ)在线段PF上是否存在一点M,使DM与平在ADP所成的角为30°?若存在,确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案