精英家教网 > 高中数学 > 题目详情
设函数f(x)=xekx(k≠0),
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)讨论函数f(x)的单调性;
(3)设g(x)=x2-2bx+4,当k=1时,若对任意x1∈R,存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.
【答案】分析:(1)f′(x)=(1+kx)ekx,由f(0)=0,且f′(0)=1,能求出曲线y=f(x)在点(0,f(0))处的切线方程.
(2)令f′(x)=(1+kx)ekx>0,所以1+kx>0,由此利用k的符号进行分类讨论,能求出f(x)的单调性.
(3)当k=1时,f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,所以对任意x1∈R,有f(x1)≥f(-1)=-,已知存在x2∈[1,2],使f(x1)≥g(x2),所以-≥g(x2),x2∈[1,2],由此能求出实数b取值范围.
解答:解:(1)f′(x)=(1+kx)ekx
因为f(0)=0,且f′(0)=1,
所以曲线y=f(x)在点(0,f(0))处的切线方程为:y=x.(4分)
(2)令f′(x)=(1+kx)ekx>0,所以1+kx>0,
当k>0时,x>-
此时f(x)在(-∞,-)上单调递减,在(-,+∞)上单调递增;
当k<0时,x<-
此时f(x)在(-∞,-)上单调递增,在(-,+∞)上单调递减.(8分)
(3)当k=1时,f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,
所以对任意x1∈R,有f(x1)≥f(-1)=-
又已知存在x2∈[1,2],
使f(x1)≥g(x2),所以-≥g(x2),x2∈[1,2],
即存在x∈[1,2],使g(x)=x2-2bx+4≤-
即2b≥x+
即因为当x∈[1,2],x+∈[4+,5+],
所以2b≥4+,即实数b取值范围是b≥.(14分)
点评:本题考查切线方程的求法,考查函数单调性的求法,考查满足条件的实数的取值范围的求法.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对?x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1,f (x1))和(x2,g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe-x+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式
(2)设a>0,讨论函数y=f(x)的单调性;
(3)若对任意x∈(0,1),恒有f(x)>1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知函数f(x)=[x2-(a+2)x-2a2+a+2]ex
(1)求函数f(x)的单调增区间;
(2)设a>0,x=2是f(x)的极值点,函数h(x)=xe-xf(x).若过点A(0,m)(m≠0)可作曲线y=h(x)的三条切线,求实数m的取值范围;
(3)设a>1,函数g(x)=(a2+4)ex,若存在x1∈[0,1]、x2∈[0,1],使|f(x1)-f(x2)|<12,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北一模)设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式,
(2)设a>O,讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:2012年四川省德阳市高考数学三模试卷(理科)(解析版) 题型:解答题

已知函数f(x)=[x2-(a+2)x-2a2+a+2]ex
(1)求函数f(x)的单调增区间;
(2)设a>0,x=2是f(x)的极值点,函数h(x)=xe-xf(x).若过点A(0,m)(m≠0)可作曲线y=h(x)的三条切线,求实数m的取值范围;
(3)设a>1,函数g(x)=(a2+4)ex,若存在x1∈[0,1]、x2∈[0,1],使|f(x1)-f(x2)|<12,求实数a的取值范围.

查看答案和解析>>

同步练习册答案