精英家教网 > 高中数学 > 题目详情
曲线y=(
1
2
)
x
在x=0点处的切线方程是(  )
A.x+yln2-ln2=0B.xln2+y-1=0
C.x-y+1=0D.x+y-1=0
求导数可得y′=-(
1
2
)
x
ln2
,当x=0时,y′=-ln2
∵x=0时,y=(
1
2
)
0
=1

∴曲线y=(
1
2
)
x
在x=0点处的切线方程是y-1=-xln2,即xln2+y-1=0
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳二模)曲线y=(
1
2
)
x
在x=0点处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x3-x在点(1,0)处的切线与直线x+ay=1垂直,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)已知函数f(x)=ax+lnx(a∈R).
(1)若a=1,求曲线y=f(x)在x=
12
处切线的斜率;
(2)求函数f(x)的单调增区间;
(3)设g(x)=2x,若对任意x1∈(0,+∞),存在x2∈[0,1],使f(x1)<g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且z=
.
z1
i-z2

(1)若复数z1对应的点M(m,n)在曲线y=-
1
2
(x+3)2-1
上运动,求复数z所对应的点P(x,y)的轨迹方程;
(2)将(1)中的轨迹上每一点按向量
a
=(
3
2
,1)
方向平移
13
2
个单位,得到新的轨迹C,求C的轨迹方程;
(3)过轨迹C上任意一点A(异于顶点)作其切线,交y轴于点B,求证:以线段AB为直径的圆恒过一定点,并求出此定点的坐标.

查看答案和解析>>

同步练习册答案